TRAZADO DE GRÁFICA DE FUNCIONES

Procedimiento general para representar la gráfica de una función

1. Dominio de la función

Determinar el dominio de f(x), el conjunto de valores para los cuales x está definida.

2. Intersección con los ejes

Hallar los puntos donde la gráfica corta el **eje** x y el **eje** y.

Para hallar los **interceptos en x**, si hay, en la gráfica de una función, haga **y=0** en la ecuación y resuelva para x.

Para hallar los **interceptos en y**, si hay, en la gráfica de una función, haga **x=0** en la ecuación y resuelva para y.

3. Simetrías

Para estudiar la simetría debemos de estudiar cual es la imagen de -x.

Si f(-x) = f(x), entonces la función es par, simétrica respecto al eje de ordenadas y.

Si f(-x) = -f(x), entonces la función es impar, simétrica respecto al origen O o la recta y = x.

4. Análisis de las asíntotas

Verticales:

Son rectas de la forma **x=a**. Las asíntotas verticales sólo pueden darse en puntos en los que la función no esté definida, donde se cumple que:

$$\lim_{x \to a} f(x) = \pm \infty$$

Horizontales:

Son rectas de la forma **y=b**, donde se cumple que:

$$\lim_{x \to \pm \infty} f(x) = b$$

Oblicuas:

Recta de la forma **y=mx+b**, donde **m** pendiente, **b** intercepto con el eje y, se obtienen mediante:

$$m = \lim_{x \to \pm \infty} \frac{f(x)}{x}$$

$$b = \lim_{x \to \pm \infty} (f(x) - mx)$$

5. Puntos críticos (1° Derivada) f'(x) = 0

Hallar los puntos donde la recta tangente a la gráfica es horizontal, vertical (picos) o no existe.

Se determinan los valores de x para los cuales f'(x) = 0.

6. Crecimiento y decrecimiento f'(x)

Tomar sobre el eje x los puntos críticos y aquellos en los que la función no está definida. Esos puntos dividen al eje x en varios intervalos.

Estudiar el signo de la primera derivada en cada intervalo, deducir si la función es:

Creciente,

Decreciente,

Si f'(x) > 0 (positiva).

Si f'(x) < 0 (negativa).

7. Puntos de inflexión (2° Derivada) f''(x) = 0

Los puntos en los que la curva cambia de concavidades (cóncava a convexa, o al revés), se llaman **puntos de inflexión**; en esos puntos, la tangente corta la curva.

Se determinan los valores de x para los cuales f''(x) = 0.

8. Concavidades f'(x)

Se debe determinar el conjunto de valores x para los cuales f''(x) es positiva o negativa, para esto se estudia el signo de la segunda derivada en cada intervalo, deducir si la función es:

Cóncava hacia arriba,

Cóncava hacía abajo,

Si f''(x) > 0 (positiva).

sif''(x) < 0 (negativa).

9. Trazado de la gráfica de la función

Por último, se emplea toda la información obtenida en los pasos anteriores para realizar el trazo de la gráfica de la función.